ar X iv : 0 70 7 . 16 06 v 1 [ m at h . PR ] 1 1 Ju l 2 00 7 Exchangeable partitions derived from Markovian coalescents with simultaneous multiple collisions ∗

نویسنده

  • Rui Dong
چکیده

Kingman derived the Ewens sampling formula for random partitions from the genealogy model defined by a Poisson process of mutations along lines of descent governed by a simple coalescent process. Möhle described the recursion which determines the generalization of the Ewens sampling formula when the lines of descent are governed by a coalescent with multiple collisions. In [7] authors exploit an analogy with the theory of regenerative composition and partition structures, and provide various characterizations of the associated exchangeable random partitions. This paper gives parallel results for the further generalized model with lines of descent following a coalescent with simultaneous multiple collisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 4 . 39 02 v 1 [ m at h . PR ] 3 0 A pr 2 00 7 On the number of collisions in Λ - coalescents ∗

We examine the total number of collisions Cn in the Λ-coalescent process which starts with n particles. A linear growth and a stable limit law for Cn are shown under the assumption of a power-like behaviour of the measure Λ near 0 with exponent 0 < α < 1.

متن کامل

On the Number of Allelic Types for Samples Taken from Exchangeable Coalescents with Mutation

Exchangeable coalescents are Markovian processes with state space E , the set of equivalence relations (partitions) on N := {1, 2, . . .} with a block merging mechanism. The class of exchangeable coalescents with multiple collisions has been independently introduced by Pitman [23] and Sagitov [24]. These processes can be characterized by a finite measure Λ on the unit interval [0, 1] and are he...

متن کامل

ar X iv : 0 70 4 . 09 45 v 1 [ m at h . PR ] 6 A pr 2 00 7 Gibbs fragmentation trees ∗

We study fragmentation trees of Gibbs type. In the binary case, we identify the most general Gibbs type fragmentation tree with Aldous’s beta-splitting model, which has an extended parameter range β > −2 with respect to the Beta(β + 1, β + 1) probability distributions on which it is based. In the multifurcating case, we show that Gibbs fragmentation trees are associated with the two-parameter P...

متن کامل

ar X iv : 0 90 7 . 41 78 v 1 [ m at h . PR ] 2 3 Ju l 2 00 9 An Introduction to Stochastic PDEs

2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006